# Welcome

# Array Programs

# Recursion – Java Programming

# to print possible combinations of numbers (234, 243,324,342,etc)

`import java.util.*;`

class permutationDigits

{

int count = 0;

`void input() `

`{`

` Scanner sc = new Scanner(System.in); `

`System.out.print("Enter a digit: "); `

`int a= sc.nextInt(); `

`String s=String.valueOf(a); `

//converting int into string

`System.out.println("The Anagrams are : ");`

` compute("",s); `

`System.out.println("Total Number of Anagrams = "+count); `

`} `

`void compute(String s1, String s2)`

` {`

` if(s2.length()<=1) `

`{`

` count++;`

` System.out.println(s1+s2);`

` } `

`else `

`{ `

`for(int i=0; i<s2.length(); i++) `

`{ `

`String a = s2.substring(i, i+1);`

` String b = s2.substring(0, i); `

`String c = s2.substring(i+1); `

`compute(s1+a, b+c); `

`} `

`} `

`} `

`public static void main(String args[])`

`{ `

`permutationDigits ob=new permutationDigits(); `

`ob.input(); `

`}`

}

Output:

Enter a digit: 234

The Anagrams are :

234

243

324

342

423

432

Total Number of Anagrams = 6

# To print Anagrams (eg: TOP,TPO,POT, etc..)

`import java.util.*;`

class anagramsWord

{

int count = 0;

`void input() `

`{ `

`Scanner sc = new Scanner(System.in); `

`System.out.print("Enter a word : "); `

`String s = sc.next(); `

`System.out.println("The Anagrams are : "); `

`compute("",s);`

` System.out.println("Total NO. of Anagrams = "+count); `

`} `

`void compute(String s1, String s2) `

`{ `

`if(s2.length()<=1) `

`{ `

`count++; // no of combination words `

`System.out.println(s1+s2); `

`} `

`else`

` { `

`for(int i=0; i<s2.length(); i++)`

` { `

`String a = s2.substring(i, i+1);`

` String b = s2.substring(0, i); `

`String c = s2.substring(i+1); `

`compute(s1+a, b+c); // recursive method `

`} `

`} `

`} `

`public static void main(String args[])throws Exception`

` { `

`anagramsWord ob=new anagramsWord();`

` ob.input(); `

`}`

}

Output:

Enter a word : TOP

The Anagrams are :

TOP

TPO

OTP

OPT

PTO

POT

Total NO. of Anagrams = 6

# Printing possible combinations of 4 digit number

import java.util.*; public class Combinations { public static void main(String[] args) { int[] a = { 1, 5, 3, 6 }; for (int w = 0; w < 4; w++) { for (int x = 0; x < 4; x++) { for (int y = 0; y <4; y++) { for (int z = 0; z < 4; z++) { if (w!=x && x != y && y != z && z != x) { System.out.println(a[w] + ""+a[x] + "" + a[y] + "" + a[z]); } } } } } } }

1513

1516

1531

1536

1561

1563

1315

1316

1351

1356

1361

1365

1615

1613

1651

1653

1631

1635

5153

5156

5135

5136

5165

5163 continue….

# Inheritance Program & Interface

# Magic Number & Pallindrome using iterative methods

# This blog helps you !

# Inheritance – Section C – 12th ISC

# Section B – Constructs & Functions – Part 2

# ISC -Section B- Java Prorgramming – a quick revision

# Evil Number

An Evil number is a positive whole number which has even number of 1’s in its binary equivalent. Eg: Binary equivalent of 9 is 1001, contains even number of 1’s.

Design a program to accept a positive whole number and find the binary equivalent of the number and count the number of 1’s in it and display whether it is an Evil number or not.

Eg:

INPUT : 15

BINARY EQUIVALENT : 1111

NO. OF 1’S : 4

OUTPUT : EVIL NUMBER

```
import java.util.Scanner;
class bintoDec
{
int n, a, count1=0;
String s = "";
void input()
{
Scanner sc = new Scanner(System.in);
System.out.println("Enter decimal number ");
n = sc.nextInt();
System.out.println("INPUT : "+n);
}
void calculate()
{
input();
while(n>0)
{
a = n%2;
if(a == 1)
{
count1++;
}
s = a+" "+s;
n = n/2;
}
System.out.println("BINARY EQUIVALENT:" +s);
System.out.println("NO. OF 1's " +count1);
}
void count()
{
calculate();
if( count1 %2 ==0)
System.out.println("\n EVIL NUMBER");
else
System.out.println("\nNOT AN EVIL NUMBER");
}
public static void main(String args[])
{
bintoDec bin=new bintoDec();
bin.count();
}
}
```

Enter decimal number

24

INPUT : 24

BINARY EQUIVALENT:1 1 0 0 0

NO. OF 1’s 2

EVIL NUMBER

Enter decimal number

25

INPUT : 25

BINARY EQUIVALENT:1 1 0 0 1

NO. OF 1’s 3

NOT AN EVIL NUMBER

# Calm Music- Enjoy, Relax and Study – Part 1

Background music for studying, Relaxing music.

# ICSE – 10th Computer Applications – Chapter 1

ICSE 10th Computer Applications -Chapter wise – 1st Chapter

# How to map in KMap – Part 3

How to map in KMap ? – Part 3

# How to map in KMap ? Part 2

How to map values in KMAP ? – PArt 2

# Boolean Algebra – KMap – Part 1

How to draw a KMap ? Part 1

# Happy Independence Day

# Datatypes in Java, rvalue & lvalue

Datatypes- Primitive and non primitive datatypes

what is rvalue and lvalue ?

# Sum of Series x2/1! + x4/3! + x6/5! + xn/(n-1)!

A class SeriesOne is desgined to calculate the sum of the following series:

Sum = x2/1! + x4/3! + x6/5! + xn/(n-1)!

Some of the members of the class are given below:

class name : SeriesOne

Data members/ instance variables :

x : to store an integer number

n : to store number of terms

sum : double variable to store the sum of the series

Member functions:

SeriesOne(int xx, int nn) : constructor to assign x=xx and n=nn

double findfact(int m) : to return the factorial of m .

double findpower(int x, int y) : to return x raised to the power of y

void calculate() : to calculate the sum of the series

void display() : to display the sum of the series.

Specify the class SeriesOne, giving the details of the above member data and methods only.

Define the main() function to create an object and call the member function accordingly to enable the task.

```
import java.util.*;
class SeriesOne
{
int x,n,sum;
SeriesOne(int xx, int nn)
{
x=xx;
n=nn;
}
double findfact(int m)
{
int fact=1;
for(int i=1;i <=m; i++)
fact=fact*i;
return fact;
}
double findpower(int x, int y)
{
double res;
res= Math.pow(x,y);
return res;
}
void cal()
{
double term=0;
for(int i=2; i <=n; i=i+2)
{
term= findpower(x,i) / findfact( i-1);
sum+=term;
}
}
void display()
{
System.out.println("Sum of the series:"+sum);
}
public static void main(String[] args){
SeriesOne so=new SeriesOne();
so.cal();
so.display();
}
}
```

Enter the value of x:

3

Enter the value of n:

4

Sum of the series:22

# Disarium Number using Methods

A **Disarium number** is a **number** defined by the following process:

Sum of its digits powered with their respective position is equal to the originalÂ **number**. Some otherÂ **DISARIUM**Â are 89, 135,175, 518 etc

Input : n = 135Output : Yes 1^1 + 3^2 + 5^3 = 135Therefore, 135 is a Disarium number

```
import java.util.*;
class DisariumNumber
{
int n,rem, sum,len;
DisariumNumber()
{
n =0;
rem = 0;
sum = 0;
}
void read()
{
Scanner sc=new Scanner(System.in);
System.out.print("Enter a number : ");
n = sc.nextInt();
}
void cal()
{
read();
int copy = n;
String s = Integer.toString(n); //converting the number into a String
len = s.length(); //finding the length of the number
while(copy>0)
{
rem = copy % 10; //extracting the last digit
sum = sum + (int)Math.pow(rem,len);
len--;
copy = copy / 10;
}
if(sum == n)
System.out.println(n+" is a Disarium Number.");
else
System.out.println(n+" is not a Disarium Number.");
}
public static void main(String[] args){
DisariumNumber ds= new DisariumNumber();
ds.cal();
}
}
```

Enter a number : 135

135 is a Disarium Number.

Enter a number : 234

234 is not a Disarium Number.

Enter a number : 89

89 is a Disarium Number.

# Prime Numbers Factorial

Write a program to check whether the given number is prime number or not, if it is prime number display the factorial.

```
import java.util.*;
public class primeFactorial
{
int i,m,flag,n;
primeFactorial()
{
n=0;
m=0;
flag=0;
}
public void input()
{
Scanner sc = new Scanner (System.in);
System.out.println("Enter the number:");
n=sc.nextInt();
}
public void calculate()
{
input(); // input()method invocation
m=n/2;
if(n==0||n==1)
{
System.out.println(n+" is not prime number");
}
else
{
for(i=2;i<=m;i++)
{
if(n%i==0)
{
flag=1; //status variable, if any divisor found, flag=1
break;
}
} // end of for loop
if(flag==0)
{
System.out.println(n+" is prime number");
fact(n);
}
else
{
System.out.println(n+" is not prime number");
}
}//end of outer else
}
public void fact(int num1)
{
int n2=num1,fact=1;
for(int j=1;j<=n2;j++)
fact=fact *j;
System.out.println("Factorial " + fact);
}
public static void main(String args[])
{
primeFactorial pN=new primeFactorial();
pN.calculate(); // calculate() method call
}
}
```

Output:

Enter the number:

5

5 is prime number

Factorial 120

Enter the number:

4

4 is not prime number

# Prime Number

Prime Number : – a number which is divisible by 1 and itself (i.e it has only two factors). **0 & 1 are non prime numbers.**

Eg: 5 ===> 5 * 1 = 5 (1 , 5 are the two factors – 5 is Prime no.)

15 =====> 15 * 1= 15 , 5 * 3= 15

Factors of 15 are 1, 3 and 5. (3 factors – 15 is not a Prime no.)

——————————————————————————————————————–

**Write a Java program to check whether the given number is ****PRIME or NOT.**

To understand the program, here a simple explanation:

for loop variable starts with 2 (i =2 ) because 1 is a factor of every number (prime and non prime). We only have to loop through 2 to half of given numberÂ , because no number is divisible by more than its half.

(Divisibilty concept a % b == 0 , to find the divisor. If any divisor finds, the

value of flag updates as 1 and immediately exit from the loop by the break statement. )

If the flag =1 means it is not a prime number

```
import java.util.*;
public class primeNumberProgram
{
public static void main(String args[])
{
int i,m=0,flag=0,n;
Scanner sc = new Scanner (System.in);
System.out.println("Enter the number:");
n=sc.nextInt();
m=n/2;
if(n==0||n==1)
{
System.out.println(n+" is not prime number");
}
else
{
for(i=2;i<=m;i++)
{
if(n%i==0)
{
flag=1; //status variable, if any divisor found, flag=1
break;
}
} // end of for loop
if(flag==0)
{
System.out.println(n+" is prime number");
}
else
{
System.out.println(n+" is not prime number");
}
}//end of outer else
}// main
}//class
```

Output:

Enter the number:

25

25 is not prime number

Enter the number:

23

23 is prime number

Enter the number:

19

19 is prime number

m=n/2, because to find factors of a number,

eg: 10 can be written as

1 * 10 =10

2 * 5 = 10

can either write as

5 * 2 = 10

10 * 1= 10

From the above example, you can understand by finding the factors from 1 to n is same as 1 to n/2.

till half of the n value is required. (m =n/2)

# Boolean Algebra Chapter1 PART 05 POS into Canonical POS

Kindly watch, subscribe, share and like my video…

Its about the conversion of SOP/POS into its corresponding Canonicals and Cardinal forms.

# Boolean Algebra Chapter1 min/MaxTerms/Canonical/ Cardinal/SOP/POS

Kindly watch, subscribe, like and share

# Boolean Algebra – Solved Qns

Reduce Boolean Expression using truth table and algebraic method

Find the complement of the given using Demorgan’s law

Kindly Like, Share and Subscribe !!!

Support me!!!

# Boolean Algebra – Logic gates, Duality Principle

Logic gates and Principle of Duality has explained in the above video.

Have a look !!!

# ISC_12th_Chapterwise- Propositions

Chapter wise Explanation – ISC Computer Science 12th std.

Have a look !!!

Kindly Subscribe, Share and Like , support my channel.